CS340R: Rusty Systems

Spring 2024
Tuesdays and Thursdays, 10:30-11:50
380-380W

Loada;lCall
name: my_driver
we:{ JOOI}

Email: cs340r-spr2324-staff @lists.stanford.edu e

we:{ L1}

TextSec RodataSec DataSec TextSec
name: funci name: stri name: nmy_var name: foo
size: 1.2KB | | size: 868 size: 88 size: 406 B

Instructor: Philip Levis
« Office hours: TBD

CA: Deepti Raghavan
» Office hours: TBD

CA: Rae Wong
» Office hours: TBD

vaddr: FES4.. vaddr: FE98.. vaddr: FEBC.. vaddr: FF14..

L/ MappedPages (MP) f LoadedSection D depends on [:]

This course seeks to ask, and start to answer, a simple question: "What are the most important open research challenges for software
systems written in Rust?"

CS340R is a graduate research course intended to explore how Rust, as a language, introduces new research questions. C (and C++)
have dominated software systems for so long that their challenges (e.g., asynchrony, memory management, array indexing) are assumed
as basic systems problems. Rust, however, has very different challenges. How does this change research?

CS340R is not intended to be a primer on the Rust language. While we will spend the first three weeks learning Rust, this is so that
students can begin reimplementing a recent research system in Rust. Through this effort, we will learn how a Rust implementation differs
and why. Are there parts of the original system which are hard but are easy in Rust (e.g., memory safety)? Are there parts of the system
which are much harder in Rust (e.g., asynchrony, memory layouts, buffer management)? These latter discoveries may indicate places
where research could make a contribution.

We will read a wide range of (advanced) research papers describing systems written in Rust. If you have not taken a first paper reading
course in systems before (e.g., CS240, CS244, CS244B, or equivalent at another institution), you are not prepared to take CS340R.
There is a tremendous amount of institutional knowledge in systems research, and if it is new to you, many of the papers will require a lot
of background reading. For example, you should know the answers to some (but probably not all) of these questions:

« What are some of the tradeoffs between thread-based and event-based concurrency?
e What is livelock?

¢ What is idempotency?

What are the advantages of a log-structured file system? What is hard?

+ What are some differences between a macrokernel and a microkernel?

* What is scatter-gather 1/0O and when is it useful?

¢ What is optimistic concurrency control?

« What are some tradeoffs between garbage collection and reference counting?

* What is a replicated state machine? What are the major algorithms used for them?

« What is information flow and how is it used in secure systems?

The course is split into two parts. In the first 3 weeks, students begin to learn the basics of Rust. At the end of these three weeks,
students form into project groups, picking a recent system implemented in a language other than Rust. Over the next seven weeks of the
quarter, the groups re-implement the system in Rust while we read research papers on systems built in Rust. Students write a short
summary (300 words) for papers in weeks 4-10, which we use to guide class discussion.

Syllabus (in progress)

For ACM papers that aren't public access, you can log into the ACM Digital Library using Institutional Login and choosing Stanford. You
should be able to log in with your SUNet ID to get access.

Date Topic Due
4/2 Course Goals and Rust

4/4 System Programming in Rust: Beyond Safety Rust Book, Chapters 1-5

4/9 Kernel extension verification is untenable Rust Book, Chapters 6-10

4/11 Ownership is Theft: Experiences Building an Embedded OS in Rust Rust Book, Chapters
11-15

4/16 The Case for Writing a Kernel in Rust Rust Book, Chapters
15-19

4/18 Evolving OS kernels towards secure kernel-driver interfaces Rust Book, Chapter 20

https://campus-map.stanford.edu/?srch=380-380W
https://campus-map.stanford.edu/?srch=380-380W
mailto:cs340r-spr2324-staff@lists.stanford.edu
mailto:cs340r-spr2324-staff@lists.stanford.edu
http://csl.stanford.edu/~pal
http://csl.stanford.edu/~pal
mailto:pal@cs.stanford.edu
mailto:pal@cs.stanford.edu
https://deeptir.me/
https://deeptir.me/
mailto:deeptir@cs.stanford.edu
mailto:deeptir@cs.stanford.edu
https://www.linkedin.com/in/raeyy/
https://www.linkedin.com/in/raeyy/
mailto:raewong@stanford.edu
mailto:raewong@stanford.edu
https://users.cs.utah.edu/~aburtsev/doc/crust-hotos17.pdf
https://users.cs.utah.edu/~aburtsev/doc/crust-hotos17.pdf
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://sigops.org/s/conferences/hotos/2023/papers/jia.pdf
https://sigops.org/s/conferences/hotos/2023/papers/jia.pdf
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://sing.stanford.edu/site/publications/levy-plos15-tock.pdf
https://sing.stanford.edu/site/publications/levy-plos15-tock.pdf
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://dl.acm.org/doi/10.1145/3124680.3124717/
https://dl.acm.org/doi/10.1145/3124680.3124717/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://sigops.org/s/conferences/hotos/2023/papers/burtsev.pdf
https://sigops.org/s/conferences/hotos/2023/papers/burtsev.pdf
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/

4/23
4/25

4/30
5/2
5/7
5/9
5114
5/16
5/21
5/23
5/28
5/30
6/4
6/11

How do programmers use unsafe rust? Project Proposal

Understanding memory and thread safety practices and issues in real-world Rust
programs

Is rust used safely by software developers?

Multiprogramming a 64kB Computer Safely and Efficiently

Tighten rust’s belt: shrinking embedded Rust binaries

RedLeaf: Isolation and Communication in a Safe Operating System Project Review
Theseus: an Experiment in Operating System Structure and State Management
Engineering the servo web browser engine using Rust

Splinter: bare-metal extensions for multi-tenant low-latency storage

Modular information flow through ownership

Cornflakes: Zero-Copy Serialization for Microsecond-Scale Networking
NetBricks: taking the V out of NFV

Wrap-up and Reflections

Project Reports Due

https://dl.acm.org/doi/10.1145/3428204
https://dl.acm.org/doi/10.1145/3428204
https://cseweb.ucsd.edu/~yiying/RustStudy-PLDI20.pdf
https://cseweb.ucsd.edu/~yiying/RustStudy-PLDI20.pdf
https://cseweb.ucsd.edu/~yiying/RustStudy-PLDI20.pdf
https://cseweb.ucsd.edu/~yiying/RustStudy-PLDI20.pdf
https://dl.acm.org/doi/10.1145/3377811.3380413
https://dl.acm.org/doi/10.1145/3377811.3380413
https://dl.acm.org/doi/10.1145/3132747.3132786
https://dl.acm.org/doi/10.1145/3132747.3132786
https://dl.acm.org/doi/abs/10.1145/3519941.3535075
https://dl.acm.org/doi/abs/10.1145/3519941.3535075
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/boos
https://www.usenix.org/conference/osdi20/presentation/boos
https://dl.acm.org/doi/10.1145/2889160.2889229
https://dl.acm.org/doi/10.1145/2889160.2889229
https://www.usenix.org/conference/osdi18/presentation/kulkarni
https://www.usenix.org/conference/osdi18/presentation/kulkarni
https://dl.acm.org/doi/10.1145/3519939.3523445
https://dl.acm.org/doi/10.1145/3519939.3523445
https://dl.acm.org/doi/10.1145/3600006.3613137
https://dl.acm.org/doi/10.1145/3600006.3613137
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda

